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Abstract. In optical Integrated circuits (OIC) and optical device design (passive and active), the index
of refraction profile is a coordinate dependent parameter. Specifically in slab waveguides which is a basic
element in optical engineering, the guided modes and its behavior with respect to waveguide parameters
can be extracted from the exact solution of the Helmholtz equation. In the general case, the numerical
approach is applied for determination of the electric and magnetic fields. In this paper a suitable algorithm,
using the PT-symmetric quantum mechanical approach has been given for light transmission through one-
dimensional inhomogeneous media (PT-symmetric index of refraction).

PACS. 03.65.-w Quantum mechanics – 03.50.De Classical electromagnetism, Maxwell equations – 42.82.Et
Waveguides, couplers, and arrays

1 Introduction

Numerous advances have been made in the electromag-
netic field theory in recent years. This is, in part, due to
new applications of the theory to many practical prob-
lems. For example, in microwave and millimeter wave ap-
plications, there is an interesting need to investigate the
electromagnetic problem of new guiding structures, phase
array, microwave imaging, polarimetric radar, microwave
hazards, frequency sensitive surfaces, composite materials,
and microwave remote sensing [1]. In the field of optics
and photonics, applications involving fiber optics, inte-
grated optical circuits, atmospheric optics, light diffusion
in tissues, multi-layer periodic and non-periodic media,
and optics for inhomogeneous media are among many
problems whose solutions require the use of electromag-
netic theory as an essential element [1]. Guided waves in
inhomogeneous planar optical Waveguides such as grat-
ings in OIC and index modulation using electro-optics
and acousto-optical phenomenon in optical engineering
have received considerable attention owing to their ability
to perform optical signal processing and optical comput-
ing [2]. For this purpose, the characteristic of the above
mentioned Waveguide with a kerr-like film layer have also
been extensively investigated for ultra-high speed opti-
cal signal processing [1,2]. Some published papers so far,
are based on numerical methods [3]. In an analytical ap-
proach, the supersymmetric methods were used for obtain-
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ing the indexes of refraction in inhomogeneous media [4].
Also, different analytical methods for light transmission
through optical waveguides having inhomogeneous index
of refraction profiles were discussed [5]. Nowadays, opti-
cal integrated circuit design and implementation is a very
important subject for science and technology. The slab
waveguides and also channel waveguides are basic ele-
ments for OIC. Usually, the index of refraction profiles
in these Waveguides made by standard planar technology
methods, is coordinate dependent. The exact determina-
tion of the index of refraction profile needs to solve the
diffusion equations. The constant parameters in this equa-
tion depend on the process variable such as temperature.
In general exact solution for the diffusion equation can not
be found. In practice, by applying some assumption, the
Gaussian profile or error function profile can be used. But,
in the general case, the numerical approach is applied for
solving the diffusion equation and obtaining the index of
refraction profile (Graded Index Profile). So, in most of
applications the index of refraction can be approximated
by one or more suitable polynomial functions. By this ap-
proximation, we must solve the Helmholtz equation with a
polynomial function for the index of refraction. In this pa-
per we will present the exact solution for these cases. For
this aim, the PT-symmetric index of refractions are intro-
duced and exact solutions for TE-Mode of electromagnetic
field in a slab waveguide in terms of well known physical
functions are presented. The organization of this paper
is as follows. In Section 2, the concept of PT-symmetric
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index of refraction is introduced. Also, the analytical so-
lution of Helmholtz equation is presented. Our analytical
and simulated results based on the PT-symmetric idea for
anharmonic index of refraction profiles are discussed in
Section 3. Finally, the paper ends with a conclusion.

2 PT-symmetric index of refraction

In this section, we will obtain the exactly solvable index of
refraction profiles based on the PT-symmetric concept in
quantum mechanics [6,7]. First, we present the Helmholtz
wave equation for TE-Mode of electromagnetic field in
waveguides as shown in Figure 1.

Let us consider a plane wave incident upon a medium
whose dielectric constant is a function of height X . We
choose the Z-axis specially such that the plane of incidence
is in the X-Z plane. This is a two dimensional problem(

∂
∂Y = 0

)
, and thus there are two independent TE and

TM waves. These two modes are equivalent and so we can
apply the method to the TE mode only. By considering the
time Harmonic dependency (EY (X, Z, t) = EY (X, Z)eiωt)
for the electric and magnetic fields, we obtain the following
forms for the Maxwell equations

∇× E = −i ω µ H

∇× H = i ω ε E. (2.1)

Using equation (2.1), we have (µ = const., ε = ε(X))

∇×∇× E = ∇(∇E) −∇2E = ω2µ ε E.

Noting that for a dielectric media in the absence of any
charge density anywhere (∇D = 0) and ∂EY

∂Y = 0, we get[
∂2

∂X2
+

∂2

∂Z2
+ ω2µ ε (X)

]
EY (X, Z) = 0 (2.2)

where ω2µε(X) = k2
0n

2(X) = k2
0n

2
0 + k2

0n1g(X) and n1g
is a dimensionless quantity. Also, let us consider a TE-
plane wave obliquely incident upon the medium shown in
Figure 1. So, we can write

EY (X, Z) = EY (X)e−ikZ . (2.3)

Then, the Helmholtz equation for light transmission in
this Waveguide is[

d2

dX2
+ k2

0n1g(X)
]

EY (X) = (k2 − k2
0n

2
0)EY (X). (2.4)

Here, we want to determine the polynomial type of the
index of refraction in which equation (2.4) has exact solu-
tions. Now, we define the new dimensionless variable x as

x = k0X. (2.5)

In this equation x is dimensionless and X is the actual
length. Using this newly introduced dimensionless vari-
able, equation (2.4) can be converted to[

−1
2

d2

dx2
− 1

2
n1g(x)

]
EY (x) = −1

2

(
k2

k2
0

− n2
0

)
EY (x).

(2.6)

Fig. 1. Slab waveguide structure.

Now, we apply the PT-symmetric quantum mechanical
methods to solve the Helmholtz equation (Eq. (2.6)). Until
1998 [6–8], the Hermiticity of the Hamiltonian was sup-
posed to be the necessary condition for having real spec-
trum. A conjecture due to Bender and Bottcher, has re-
laxed this condition in a very inspiring way by introducing
the concept of PT-symmetric Hamiltonians. Here, P de-
notes the parity operation (space reflection) (x → −x) and
T mimics the time reversal (i → −i). If (PT )H(PT )−1 =
H and if (PT )Ψ(x) = ±Ψ(x), the energy will be real and
have complex conjugate pairs if the latter consideration is
not satisfied [7]. So, using this idea, several PT-symmetric
index of refraction appeared to have real wave vectors.
Now, using the analogy between Helmholtz wave equa-
tion (Eq. (2.6)) and the Schrödinger like equation [5], we
obtain the following relations

−1
2
n1g(x) = V (x)

E =
n2

0 −
k2

k2
0

2
. (2.7)

The quantity E in equation (2.7) is only a dimensionless
eigenvalue. Now, let us consider the following anharmonic
index of refraction

−1
2
n1g(x) =

6∑
i=1

Cix
i (2.8)

where the Ci’s are dimensionless constants. In order to ob-
tain a PT symmetric invariant index of refraction n2(x) =
n2

0 + n1g(x), the coefficients C1,3,5 and C2,4,6 must be
pure imaginary and real constants respectively in equa-
tion (2.8). Now, we consider [6] the exact solution for

equation (2.6) as EY (x) = E0f(x)e
−

4∑
j=1

bjxj

, where E0 is a
real constant with the dimensions of the electric field, f(x)
is some dimensionless function of variable x and bi’s are
dimensionless constants. In this work, we concentrate on
three choices of f(x) as follows

a) f(x) = 1
b) f(x) = x + a0

c) f(x) = x2 + a1x + a0

where a0 and a1 are dimensionless constants. According
to our knowledge from waveguide theory, the different
f(x) mentioned above correspond to different waveguide
modes.The details of the calculations for the three cases
mentioned above are given in the next section.
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Table 1. Final results for f(x) = 1, f(x) = x + a0, f(x) = x2 + a1x + a0.

f(x) = 1 k2 = k2
0(n

2
0 − 2b2)

n2(x) = n2
0 − (x6 + 4b2x

4 + (4b2
2 − 3)x2)

EY (x) = E0e
− 1

4 x4−b2x2

f(x) = x + a0 k2 = k2
0(n

2
0 − 6b2)

n2(x) = n2
0 − (x6 + 4b2x

4 + (4b2
2 − 5)x2)

EY (x) = E0xe−
1
4 x4−b2x2

f(x) = x2 + a1x + a0 k2
± = k2

0

(
n2

0 − 6b2 ∓ 2
√

4b2
2 + 2

)
n2(x) = n2

0 − (x6 + 4b2x
4 + (4b2

2 − 7)x2)

E±
Y (x) = E0

[
x2 + b2 ∓

√
b2
2 + 1

2

]
e−

1
4 x4−b2x2

3 Results and discussion

Now, we give the detail of calculations for the electric field,
index of refraction and wave vector in subsections a, b, c
and d.

a) f(x) = 1
For this case the electric field in TE-Mode is given by

EY (x) = E0e
−

4∑
j=1

bjxj

. (3.1)

After substitution of equation (3.1) in the Helmholtz
equation (Eq. (2.6)) and using the equation (2.8),
we have

C1 = −3b3 + 2b1b2

C2 = −6b4 + 3b1b3 + 2b2
2

C3 = 4b1b4 + 6b2b3

C4 = 8b2b4 +
9
2
b2
3

C5 = 12b3b4

C6 = 8b2
4

k2 = k2
0(n

2
0 − 2b2 + b2

1). (3.2)

In order to obtain a real index of refraction, we assume
that b1 = b3 = 0 in equation (3.2), hence we have

C1 = C3 = C5 = 0

C2 = −6b4 + 2b2
2

C4 = 8b2b4

C6 = 8b2
4

k2 = k2
0(n

2
0 − 2b2). (3.3)

Then, the electric field in equation (3.1) is

EY (x) = E0e
−b4x4−b2x2

. (3.4)

To have a finite electric field at infinity (x → ±∞),
b4 must be a real positive constant. By considering

C6 = 1
2 in equation (3.3), we obtain

b4 =
1
4

C2 = −3
2

+ 2b2
2

C4 = 2b2. (3.5)

The final results for the above example is given in Ta-
ble 1. The simulated results for the electric field and
the index of refraction profiles for f(x) = 1 are shown
in Figure 2.

b) f(x) = x + a0

For this case the electric field in TE-Mode is given by

EY (x) = E0(x + a0)e−
1
4x4−b3x3−b2x2−b1x. (3.6)

After substitution of equation (3.6) in the Helmholtz
equation (Eq. (2.6)) and using equation (2.8), we ob-
tain the following relations

C1 = −6b3 + 2b1b2 + a0

C2 = −5
2

+ 3b1b3 + 2b2
2

C3 = b1 + 6b2b3

C4 = 2b2 +
9
2
b2
3

C5 = 3b3

C6 =
1
2

a3
0 − 3b3a

2
0 + 2b2a0 − b1 = 0. (3.7)

In this case the wave vector is given by

k2 = k2
0(n

2
0 + b2

1 − 6b2 + 6a0b3 − 2a2
0). (3.8)

As a special example, let us assume that

b1 = b3 = a0 = 0.
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Fig. 2. Electric field amplitude vs. x (b2 = 1, E0 = 1);
1: EY for case a; 2: EY for case b; 3: EY for case c (E−

Y );
4: EY for case c (E+

Y ).

So, by using equations (3, 7, 8), we obtain

C1 = C3 = C5 = 0

C2 = −5
2

+ 2b2
2

C4 = 2b2

C6 =
1
2

k2 = k2
0(n

2
0 − 6b2). (3.9)

The corresponding electric field is

EY (x) = E0xe−
1
4x4−b2x2

. (3.10)

The final results for this case is given in Table 1. Also,
the simulated results are given in Figure 2.

c) f(x) = x2 + a1x + a0

If we perform as in the two previous cases, we have the
following results for b3 = 0,

E
(±)
Y (x) = E0

[
x2 + b2 ∓

√
b2
2 +

1
2

]
e−

1
4x4−b2x2

k2
± = k2

0

(
n2

0 − 6b2 ∓ 2
√

4b2
2 + 2

)
. (3.11)

The final results for this case is given in Table 1. The
simulated results are given in Figures (2–6).

d) Here, we are interested in examples with complex in-
dexes of refraction. By the special choice

b1 = i, b3 = 0, b4 =
1
4
,

(a)

(b)

Fig. 3. (a) Electric field amplitude for case c (E+
Y ) vs. b2 and

x (E0 = 1). (b) Electric field amplitude for case c (E−
Y ) vs.

b2 and x (E0 = 1).

Fig. 4. Electric field amplitude for case b vs. b2 and x (E0 = 1).

the coefficients Ci’s in equation (3.2) are

C1 = 2b2i

C2 = 2b2
2 −

3
2

C3 = i

C4 = 2b2

C5 = 0

C6 =
1
2
. (3.12)
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Fig. 5. Electric field amplitude for case a vs. b2 and x (E0 = 1).

The corresponding explicit forms for the wave vector,
electric field and complex index of refraction are

k2 = k2
0(n

2
0 − 2b2 − 1)

EY (x) = E0e
− 1

4x4−b2x2−ix

n2(x) = n2
0 −

[
x6 + 4b2x

4 + (4b2
2 − 3)x2

+ i(2x3 + 4b2x)
]
. (3.13)

As a second example for a media with complex index
of refraction, we choose

a0 = 0, b1 = 0, b3 =
i

3
,

the coefficients Ci’s in equation (3.7) are

C1 = −2i

C2 = 2b2
2 −

5
2

C3 = 2b2i

C4 = 2b2 − 1
2

C5 = i

C6 =
1
2
. (3.14)

In this case the explicit forms for the wave vector, elec-
tric field and complex index of refraction are

k2 = k2
0(n

2
0 − 6b2)

EY (x) = E0xe−
1
4 x4− i

3x3−b2x2

n2(x) = n2
0 −

[
x6 + (4b2 − 1)x4 + (4b2

2 − 5)x2

+ i(2x5 + 4b2x
3 − 4x)

]
. (3.15)

Fig. 6. Index of refraction profile for case a vs.
b2 and x (n0 = 3).

It is important to note that the indexes of refraction
appear in equations (3.13,15) have the following prop-
erty (PT )n2(x)(PT )−1 = n2(x) (i.e. They are PT-
invariant index of refractions).

4 Conclusion

In this paper, we have proposed a new set of the indexes
of refraction in which the Helmholtz equation has exact
solutions. In this work, the PT-symmetric idea has been
used for this proposal. Some exact solutions for the elec-
tromagnetic fields for our proposed PT-Symmetric index
of refraction are presented. Our proposal for the index of
refraction is practical and can be implemented easily with
molecular beam epitaxy (MBE) and metal organic chemi-
cal vapour deposition (MOCVD) which are standard pla-
nar integrated circuit technologies.
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